Abstract

We continue the study of robusttensor codes and expand the class of base codes that can be used as a starting point for the construction of locally testable codes via robust two-wise tensor products. In particular, we show that all unique-neighbor expander codes and all locally correctable codes, when tensored with any other good-distance code, are robust and hence can be used to construct locally testable codes. Previous works by [2] required stronger expansion properties to obtain locally testable codes. Our proofs follow by defining the notion of weakly smoothcodes that generalize the smoothcodes of [2]. We show that weakly smooth codes are sufficient for constructing robust tensor codes. Using the weaker definition, we are able to expand the family of base codes to include the aforementioned ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.