Abstract
Let J1 and J2 be two Jordan algebras with unit elements. We define various tensor products of J1 and J2. The first, which we call the Kronecker product, is the most obvious and is based on the tensor product of the vector spaces. We find conditions sufficient for its existence and for its non-existence. Motivated by the universal mapping property for the tensor product of associative algebras we define, in Section 2, tensor products of J1 and J2 by means of a universal mapping property. The tensor products always exist for special Jordan algebras and need not coincide with the Kronecker product when the latter exists. In Section 3 we construct a more concrete tensor product for special Jordan algebras. Here the tensor product of a special Jordan algebra and an associative Jordan algebra coincides with the Kronecker product of these algebras. We show that this "special" tensor product is the natural tensor product for some Jordan matrix algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.