Abstract
We study the tensor product of a highest weight module with an intermediate series module over the Neveu–Schwarz algebra. If the highest weight module is nontrivial, the weight spaces of such a tensor product are infinite dimensional. We show that such a tensor product is indecomposable. Using a “shifting technique” developed by H. Chen, X. Guo, and K. Zhao for the Virasoro algebra case, we give necessary and sufficient conditions for such a tensor product to be irreducible. Furthermore, we give necessary and sufficient conditions for two such tensor products to be isomorphic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.