Abstract

Abstract In this work, the dual-weighted residual method is applied to a space-time formulation of nonstationary Stokes and Navier–Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor–Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the dual-weighted residual method for incompressible flow can be extended to a partition-of-unity based error localization. We substantiate our methodology on 2D benchmark problems from computational fluid mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.