Abstract

We obtain a family of explicit polyhedral combinatorial expressions for multiplicities in the tensor product of two simple finite-dimensional modules over a complex semisimple Lie algebra. Here polyhedral means that the multiplicity in question is expressed as the number of lattice points in some convex polytope. Our answers use a new combinatorial concept of $\ii$-trails which resemble Littelmann's paths but seem to be more tractable. We also study combinatorial structure of Lusztig's canonical bases or, equivalently of Kashiwara's global bases. Although Lusztig's and Kashiwara's approaches were shown by Lusztig to be equivalent to each other, they lead to different combinatorial parametrizations of the canonical bases. One of our main results is an explicit description of the relationship between these parametrizations. Our approach to the above problems is based on a remarkable observation by G. Lusztig that combinatorics of the canonical basis is closely related to geometry of the totally positive varieties. We formulate this relationship in terms of two mutually inverse transformations: tropicalization and geometric lifting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.