Abstract
Tensor hierarchy algebras constitute a class of non-contragredient Lie superalgebras, whose finite-dimensional members are the “Cartan-type” Lie superalgebras in Kac’s classification. They have applications in mathematical physics, especially in extended geometry and gauged supergravity. We further develop the recently proposed definition of tensor hierarchy algebras in terms of generators and relations encoded in a Dynkin diagram (which coincides with the diagram for a related Borcherds superalgebra). We apply it to cases where a grey node is added to the Dynkin diagram of a rank r + 1 Kac-Moody algebra mathfrak{g} +, which in turn is an extension of a rank r finite-dimensional semisimple simply laced Lie algebra mathfrak{g} . The algebras are specified by mathfrak{g} together with a dominant integral weight λ. As a by-product, a remarkable identity involving representation matrices for arbitrary integral highest weight representations of mathfrak{g} is proven. An accompanying paper [1] describes the application of tensor hierarchy algebras to the gauge structure and dynamics in models of extended geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.