Abstract

In this paper, we develop the notion of entropy for uniform hypergraphs via tensor theory. We employ the probability distribution of the generalized singular values, calculated from the higher-order singular value decomposition of the Laplacian tensors, to fit into the Shannon entropy formula. We show that this tensor entropy is an extension of von Neumann entropy for graphs. In addition, we establish results on the lower and upper bounds of the entropy and demonstrate that it is a measure of regularity for uniform hypergraphs in simulated and experimental data. We exploit the tensor train decomposition in computing the proposed tensor entropy efficiently. Finally, we introduce the notion of robustness for uniform hypergraphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.