Abstract

Fock and Goncharov introduced a family of cluster algebras associated with the moduli of SLk-local systems on a marked surface with extra decorations at marked points. We study this family from an algebraic and combinatorial perspective, emphasizing the structures which arise when the surface has punctures. When k=2, these structures are the tagged arcs and tagged triangulations of Fomin, Shapiro, and Thurston. For higher k, the tagging of arcs is replaced by a Weyl group action at punctures discovered by Goncharov and Shen. We pursue a higher analogue of a tagged triangulation in the language of tensor diagrams, extending work of Fomin and the second author, and we formulate skein-algebraic tools for calculating in these cluster algebras. We analyze the finite mutation type examples in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.