Abstract
AbstractSome properties of tensor ranks and the non-closeness issue of sets with given restrictions on the rank of tensors entering those sets are studied. It is proved that the rank of the d-dimensional Laplacian equals d. The following conjecture is formulated: for any tensor of non-maximal rank there exists a nonzero decomposable tensor (tensor of rank 1) such that the rank increases by one after adding this tensor. In the general case, it is proved that this property holds algebraically almost everywhere for complex tensors of fixed size whose rank is strictly less than the generic rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Russian Journal of Numerical Analysis and Mathematical Modelling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.