Abstract

The effects of different polarization conditions on vibrational echo signals are systematically explored for the rigid cyclic dipeptide 2,5-diazabicyclo[2,2,2]octane-3,6-dione. An anharmonic vibrational Hamiltonian is constructed by computing energy derivatives to fourth order using density functional theory. Molecular frame transition dipole orientations are then used to calculate polarization dependent orientational factors corresponding to various Liouville space pathways. Enhancement and elimination of specific peaks in twodimensional correlation plots is accomplished by identifying appropriate pulse configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.