Abstract

The tensor complementarity problem $(\q, \mathcal{A})$ is to $$\mbox{ find } \x \in \mathbb{R}^n\mbox{ such that }\x \geq \0, \q + \mathcal{A}\x^{m-1} \geq \0, \mbox{ and }\x^\top (\q + \mathcal{A}\x^{m-1}) = 0.$$ We prove that a real tensor $\mathcal{A}$ is a (strictly) semi-positive tensor if and only if the tensor complementarity problem $(\q, \mathcal{A})$ has a unique solution for $\q>\0$ ($\q\geq\0$), and a symmetric real tensor is a (strictly) semi-positive tensor if and only if it is (strictly) copositive. That is, for a strictly copositive symmetric tensor $\mathcal{A}$, the tensor complementarity problem $(\q, \mathcal{A})$ has a solution for all $\q \in \mathbb{R}^n$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call