Abstract

Superplastic magnesium alloys prepared by ingot metallurgy and powder metallurgy were processed and characterized. By performing uniaxial tension and compression tests of the extruded alloys along the longitudinal direction, it was found that both alloys were highly symmetric at low-strain rates within the superplastic regime. However, near the maximum strain rate within the superplastic regime, the symmetric flow disappeared. Specifically, the flow stress in early deformation under tension was slightly lower than that under compression, and the strain hardening under tension was higher than that under compression. The asymmetry was explained using the hypothesis that grain-boundary sliding under tension is easier than under compression. As indirect evidence for easier grain-boundary sliding under tension, it was shown that the coarsened intergranular precipitates tended to agglomerate on grain boundaries experiencing a tensile stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.