Abstract

The main focus of this paper is to present a tension-stiffening model that is suitable for finite element analysis (FEA) aimed at investigating the effect of FRP strengthening on the tensile behaviour of concrete slabs. Available experimental results of the FRP-strengthened reinforced concrete slabs are used to calibrate the finite element model based on the ultimate load carrying capacity of the two-way slabs. The proposed tension-stiffening model is implemented into the constitutive concrete model defined in a general-purpose finite element code. Reinforced concrete behaviour in tension can signifcantly be changed due to strengthening. An overall increase in the post-peak stiffness based on the tensile stress-strain relationship is observed. A simplified bilinear model is introduced to define the behaviour of the FRP-strengthened concrete in tension. An expression of the fracture energy density is introduced to define the area under the concrete tensile stress-strain relationship. The tensile stress-strain relationship of concrete is referred to as the tension-stiffening model. It is shown numerically that the ultimate load capacity of two-way slab specimens is sensitive to the fracture energy density. Hence, a distinction has to be made between the definitions of the tension-stiffening model of FRP-strengthened and un-strengthened concrete. This distinction is the focus of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call