Abstract

In this work, we investigate the tension–compression asymmetry in the flow response of pure copper, severely deformed by a single pass of equal channel angular extrusion (ECAE), and tested afterwards in tension and compression along three orthogonal directions. The tension and compression responses differ in flow stress, hardening rate and transient behavior. The asymmetry in tension and compression responses depends on the direction of straining. Predictions from a microstructurally based hardening law implemented in a viscoplastic self-consistent polycrystal model demonstrate that the tension–compression asymmetry and its anisotropy arise not only from crystallographic texture but also from the directional substructure induced by the severe pre-straining. Slip activity differs in each grain and in each axial test, depending on its crystallographic orientation, orientation relationship with the previously generated substructure and pre-strain history. Asymmetry occurs because tension and compression represent two different types of strain path changes. Consequently, macroscopic deformation is a reflection of the type of strain path change represented by the post-ECAE axial test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.