Abstract
An aluminum 6061 (Al6061) metal matrix composite (MMC) reinforced with silicon carbide was prepared by stir casting. Specimens of the required dimensions were welded using the tungsten inert gas (TIG) method. ER5356 (Al-5%Mg) was chosen as the appropriate filler material for TIG welding. The input current parameter was varied (150, 170 and 200nA) while maintaining the other welding parameters at constant values. An assessment of the mechanical (tensile and impact strength) and microstructure properties of the TIG-welded Al6061 MMC with 6 wt. % silicon carbide particles was accomplished. An 8.27% improvement was observed in ultimate tensile strength (UTS) for the 150 A TIG-welded sample. UTS and elasticity decreased linearly with an increase in welding current but exhibited higher values than in non-welded specimens. The microstructural analysis of the welded MMCs showed a mixed mode of failure, with equiaxial dimples being dominant in lower-weld-current specimens. Compared to non-welded specimens, a 40% increase in impact strength was observed for the 150 A TIG-welded specimens, which decreased with an increase in the welding current value. SEM analysis revealed ductile striations and continuous river patterns, resulting in mixed failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.