Abstract

The superplastic behavior of polycrystalline YBa 2Cu 3O 7− x was investigated. Tensile elongations above 85% were achieved for fine-grained (<1 μm) microstructures tested in the temperature range of 800–875°C and strain rates varying from 6×10 −6 to 10 −3/s. It is suggested that the dominant superplastic deformation mechanism is grain boundary sliding accommodated and controlled by interface reaction, characterized by a stress exponent of n=2, a grain size exponent of p=1.5, and an activation energy of Q sp=515±104 kJ/mol. A Langdon–Mohamed deformation mechanism map was constructed. Overlaying the available experimental data onto the map, including the results from creep studies, gives an insight into the deformation mechanisms involved in high-temperature deformation of YBa 2Cu 3O 7− x .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.