Abstract

The true stress (σ)–true plastic strain (ɛ) data of a type 316LN austenitic stainless steel tested at nominal strain rates in the range 3×10-5–3×10-3 s-1 and temperatures of 300–1123 K were analysed in terms of flow relationships proposed by Hollomon, Ludwik, Swift, Voce, and Ludwigson. The applicability of the particular flow relationship is discussed in terms of ‘complete’ and ‘applicable’ range fits of the experimental σ–ɛ data. At all strain rates, in the case of the complete range fit, the Ludwigson equation followed the stress–strain data most closely at 300 K, while in the temperature range 523–773 K, the flow behaviour was described equally well by both the Ludwigson and Voce equations. In the temperature range 823–1023 K, the Voce equation described the flow behaviour most accurately in the case of the complete range fit of σ–ɛ data at all strain rates. The analysis of σ–ɛ data employing the Ludwigson equation in the applicable range fit covering low and intermediate strains, and the Hollomon equation at high strains provided close simulation of the observed flow behaviour in the temperature range 823–1023 K. At high temperatures of 1073 and 1123 K, the Ludwigson equation reduces to the Hollomon equation. The variations in different flow parameters of the Ludwigson and Voce equations with temperature and strain rate exhibited anomalous behaviour at intermediate temperatures because of dynamic strain aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call