Abstract
The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys (HEAs) subjected to cold rolling was investigated. The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases, presenting similar mechanical behavior as the as-cast state. The yield and tensile strengths of the alloys could be dramatically enhanced to ∼1205 MPa and ∼1318 MPa after 50% rolling reduction, respectively. A power-law relationship was discovered between the strain-hardening exponent and rolling reduction. The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted, mainly based on the Hollomon relationship, by the strain-hardening exponent, and showed good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Minerals, Metallurgy and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.