Abstract

AbstractThe tensile strength, tensile axial strain, and tensile strain energy were determined for Na‐, K‐, Ca‐, Al‐, and Fe‐saturated montmorillonite over the water vapor pressure range (P/Po) from 0.02 to 0.92. The procedure used was direct tensile stressing of oriented clay films. Measured tensile strengths ranged from 366 kg cm‐2 for Fe montmorillonite at 0.02 P/Po to 19 kg cm‐2 for Ca montmorillonite at 0.92 P/Po. Strength decreased rapidly with added increments of water during initial interlamellar expansion and continued to decrease at a slower rate with further additions of water. In general, strength decreased in the following order: Fe > K ≥ Na > Al > Ca. The tensile strength of Na montmorillonite was of the same order of magnitude as the force required to separate two Na clay platelets as determined from adsorption/desorption water isotherms.Axial strain was independent of P/Po above 0.4 for all systems except the Na‐saturated clay. For Fe montmorillonite, strain was insensitive to water content above 0.15 P/Po. Monovalent clay specimens required the most energy to rupture and divalent samples required the least energy. Aluminum and Fe clays required an intermediate rupture energy.The greater tensile strength and low axial strain of the Fe montmorillonite suggested that a different mechanism controlled the failure characteristics of this clay. Hydroxy iron material may be the major cementing agent in the Fe system. The data show that saturating cation played a dominant role in the strength‐energy properties of the other homoionic clays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.