Abstract

Fused Deposition Modeling (FDM) is an Additive Manufacturing technology where a heated plastic filament will be placed on the bedplate layer by layer until the 3D object is printed. The mechanical properties of the ABS FDM 3D-printed parts are not yet determined or estimated prior printing. Hence, the goal of this study is to identify the optimum 3D printing parameters based on the tensile properties of ABS FDM 3D-printed polymer parts. Taguchi approach and Range Analysis were used in finding the optimum 3D printing parameters in which different parameters were considered to meet the requirements of the orthogonal arrays. Five pieces of 3D-printed dumbbell-shaped tensile specimen were prepared for each parameter. The tests followed the ASTM D638-14 standard. The result for the optimum 3D printing configuration of ABS FDM 3D-printed material were concluded as the values with the highest tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.