Abstract

BackgroundSince the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF. Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical properties in specific the resistance to tensile strength which consequently may influence the time for membrane degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison.FindingsThe harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed the protocols described in the literature, within a total of 13 membranes produced for each protocol (n = 26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p < 0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p < 0.05 using unpaired t test).ConclusionWith this study, it was possible to conclude that indeed A-PRF has a significative higher maximal traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when two opposing forces are applied.

Highlights

  • The most frequently used biomaterial are the ones that come from autologous sources, which is still and considered to be the “gold standard” due to all its properties, including induction, conduction, and genesis, besides preventing the risk of infection [1]

  • With this study, it was possible to conclude that advanced-platelet rich fibrin (A-Platelet-rich fibrin (PRF)) has a significative higher maximal traction score and higher average traction compared to leucocyte-platelet rich fibrin (L-PRF), indicating that it had a higher resistance when two opposing forces are applied

  • The first was mainly represented by platelet-rich plasma (PRP) that was produced with the introduction of an anticoagulant and other compounds in the collection tubes and it required two centrifugations

Read more

Summary

Introduction

The most frequently used biomaterial are the ones that come from autologous sources, which is still and considered to be the “gold standard” due to all its properties, including induction, conduction, and genesis, besides preventing the risk of infection [1] These biomaterials can be produced from hard or soft tissue (e.g., bone and connective tissue, respectively), or the blood. The first was mainly represented by platelet-rich plasma (PRP) that was produced with the introduction of an anticoagulant (sodium citrate, EDTA) and other compounds (calcium chloride, bovine thrombin) in the collection tubes and it required two centrifugations. This product has shown to be useful on certain occasions as the literature has shown [3]. This study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.