Abstract

Two dimensional crystals, befitting nanoscale electronics and spintronics, can benefit strain-tunable applications due to their ultrathin and flexible nature. We show by first-principles calculations that tensile strain can enhance the exchange splitting of spins in NbSe2 and NbS2 single layers. Particularly, a switch from antiferro- to ferro-magnetism is realized by strain engineering. Under strains lower than 4%, an antiferromagnetic state with opposite spins aligned on the next-nearest-neighbor rows of Nb atoms is favored in energy due to a superexchange interaction; with higher strains the ground state turns to be ferromagnetic with a double exchange origin. In contrast, the VSe2 and VS2 single layers, though with the same trigonal prismatic coordination, remain ferromagnetic even under compressive strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call