Abstract

A high-performance polyvinyl alcohol fiber-reinforced engineered cementitious composite (PVA-ECC) was developed for structural applications under the performance-driven design approach. Fiber, matrix, and fiber/matrix interfacial properties were tailored to micromechanics models to satisfy the pseudo strain-hardening condition. This research experimentally investigated the effects of fiber surface treatment and sand content on the composite performance. Results from uniaxial tensile tests show an ultimate strain exceeding 4%, as well as an ultimate strength of 4.5 MPa for the composites, with a moderate fiber volume fraction of 2%. The specimens reveal saturated multiple cracking with crack width at ultimate strain limited to below 100 nanometers. The underlying reason of the distinctly different tensile behavior between normal fiber-reinforced concrete and PVA-ECC is highlighted by the comparison of complementary energy from their fiber bridging stress and crack opening curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call