Abstract

The tensile strain-hardening behavior of pure Ti at 100 K was investigated using X-ray diffraction line-profile analysis and plasticity simulation. The strain hardening was significantly increased at 100 K, compared with that observed at 298 K. Thus, at 100 K, necking was suppressed during tensile testing, which greatly increased material ductility. The remarkable increase in strain hardening at 100 K was attributed to the dominant activation of prismatic <a> slip and the exceptionally increased rate of its activation stress with tensile strain at 100 K. This finding significantly advances the understanding of the strain-hardening behavior of pure Ti at low temperatures, and it can also guide the development of texture-engineering strategies to increase the low-temperature ductility of pure Ti.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.