Abstract
With excellent physical and chemical properties, 2D TMDC materials have been widely used in engineering applications, but they inevitably suffer from the dual effects of strain and device size. As typical 2D TMDCs, HfSe2 and ZrS2 are reported to have excellent thermoelectric properties. Thermal transport properties have great significance for exerting the performance of materials, ensuring device lifetime and stable operation, but current research is not detailed enough. Here, first-principles combined with the phonon Boltzmann transport equation are used to study the phonon transport inside monolayer HfSe2 and ZrS2 under tensile strain and finite size, and explore the band structure properties. Our research shows that they have similar phonon dispersion curve structures, and the band gap of HfSe2 increases monotonically with the increase of tensile strain, while the bandgap of ZrS2 increases and then decreases with the increase of tensile strain. Thermal conductivity has obvious strain dependence: with the increase of tensile strain, the thermal conductivity of HfSe2 gradually decreases, while that of ZrS2 increases slightly, and then gradually decreases. Reducing the system size can limit the contribution of phonons with a long mean free path, significantly decreasing thermal conductivity through the controlling effect of tensile strain. The mode contribution of thermal conductivity is systematically investigated, and anharmonic properties including mode and frequency-level scattering rates, group velocity and Grüneisen parameters are used to explain the associated mechanism. Phonon scattering processes and channels in various cases are discussed in detail. Our research provides a detailed understanding of the phonon transport and electronic structural properties of low thermal conductivity monolayers of HfSe2 and ZrS2, and further completes the study of thermal transport of the two materials under strain and size tuning, which will provide a foundation for further popularization and application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.