Abstract

Abstract Polypropylene (PP) reinforced with 2 and 4 wt% of multi-walled carbon nanotubes (MWNT) were melt-blended in twin screw extruder and then molded by compression or micromolding process. The impact of injection speed on the surface morphology, rheological and tensile characteristics was investigated by using a scanning electron microscope, parallel plate rheometry, and tensiometry. Results showed that the tensile properties of micro-molded specimens were remarkably higher than those of the compression molded sheets. Compared to compression molded sheets, micromolded specimens demonstrated up to 40 and 244% higher tensile stiffness and yield strength, respectively, most likely due to the alignment of polymer chain segments in the flow direction induced during the micromolding process. It was observed that the fast filling speed caused a drop in the tensile properties of the nanocomposites and polymer. Rheological examination revealed that the presence of a rheological percolation network in the nanocomposites produced by micromolding and the fast injection speed was beneficial for establishing the percolated network. Morphological examination revealed that the size of nanotube agglomerations that appeared in micromolded specimens was up to five times smaller than in compression molded sheets and the agglomeration size decreased with the increase of the injection speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call