Abstract

Purpose – The traditional Japanese cotton-crepe fabric chijimi has been used for summer clothing for over a century because of its good skin comfort. The high extensibility of this fabric relies on the high-twist cotton yarns used in the weft direction. The purpose of this paper is to show the effect of environmental humidity on the extensibility of highly twisted cotton yarns to help in choosing weft yarn suitable for woven fabric. Design/methodology/approach – Four highly twisted cotton yarns are examined under 10-90 percent RH and in 25°C water. Cyclic tensile tests are performed to obtain the tensile energy, resilience, extensibility at maximum applied load (EM), and residual strain. Findings – Comparing the same yarn-count samples Y1 and Y2, the EM of Y2 (2,200 T/m) is larger than that of Y1 (1,000 T/m) under all RH conditions, and the difference increases at humidity over 60 percent RH. For fabric crepe samples woven by Y1 (warp) and Y2 (weft), the extensibility (EM-1) in the weft direction is in the range 16-26 percent, which is equivalent to that of outer-knitted fabrics. The extensibility and recovery of chijimi is largely dominated by the twist of weft yarns, which is also influenced by changes in relative humidity. Originality/value – The skin comfort of Takashima chijimi has been of interest, but the high extensibility of this cotton fabric has not been given much attention. The results of this study show that yarn twist is key to controlling extensibility in high-humidity environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.