Abstract

AbstractHigh‐density polyethylene filaments prepared by a solid‐state deformation in an Instron capillary rheometer show unusually high crystal orientation, chain extension, axial modulus, and ultimate tensile strength. The Young's modulus and ultimate tensile strength have been determined from stress–strain curves. Gripping of this high modulus polyethylene has been a problem heretofore, but the measurement of ultimate tensile strength has now been made feasible by a special gripping procedure. Tensile moduli show an increase with sample preparation temperature and pressure. Values as high as 6.7 × 1011 dyne/cm2 are obtained from samples extruded at 134°C and 2400 atm and tested at a strain rate of 3.3 × 10−4 sec−1. The effect of strain rate and frequency on modulus has also been evaluated by a combination of stress–strain data and dynamic tension plus sonic measurements over nine decades of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.