Abstract

AbstractThe tensile properties of hexachiral honeycomb made of shape memory alloy (SMA) material are modelled and verified experimentally at different tensile loading and ambient temperature conditions. The numerical models describe the temperature‐pseudoelastic behaviour of the shape memory alloy materials constituted by Ni48Ti46Cu6 alloy. Parametric analysis on the Poisson's ratio effects over large strain deformation and temperature conditions are performed, as well as the analysis of the dependence of the honeycomb stress‐strain behaviour under uniaxial loading with temperature varying through the shape memory alloy phase transformation. Chiral SMA honeycomb samples are manufactured and tested under similar environmental conditions. The experimental results are compared with the numerical one, showing good convergence in terms of trends and overall quantitative values. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.