Abstract
The mechanical properties of well-aligned double-walled carbon nanotube (DWNT) strands with diameters of 3–20 μm and lengths of ∼10 mm were measured using a stress–strain puller. The average tensile strength and Young’s modulus of the tested strands are 1.2 GPa and 16 GPa, respectively. Deformation and fracture processes of these samples are discussed. The tensile strength and Young’s modulus of an individual DWNT bundle were estimated, with values comparable to those of SWNT bundles. The superior mechanical strengths of our as-prepared DWNT strands are expected to give them potential as a high-strength material and a reinforcement in composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.