Abstract

Titanium and its alloys have been considered as one of the best engineering materials for industrial applications. Excellent combination of properties such as high strength to weight ratio, excellent resistance to corrosion makes them attractive materials for many industrial applications. Recently, considerable research has been performed on Gas Tungsten Constricted Arc welding (GTCAW) process and reported advantages include, lower heat input, reduced residual stresses and distortion. In this investigation, tensile properties of GTCA welded Ti-6Al-4V alloy joints were evaluated. Single pass, autogeneous welds free from volumetric defects were fabricated using optimized GTCAW parameters. The joints were characterized using optical microscopy, scanning electron microscopy and microhardness, survey. Tensile properties of the joints were overmatching with the base metal. The alpha and granular beta grains in the base metal were changed into short acicular alpha martensitic structure in the fusion zone as a result of GTCAW

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.