Abstract

An experimental investigation was carried out to obtain the equivalent tensile properties of different composite laminates, namely glass fibre-reinforced polymer (GFRP), carbon fibre-reinforced polymer (CFRP) and ferrocement. This work is part of a study on the application of these composites for the purpose of rehabilitation/retrofitting of RCC structural elements under distress. Tension tests were conducted on flat coupons of FRPs based on ASTM D7565/D7565M-10 and ASTM D3039/D3039M-00. Similar tension tests were conducted for mesh reinforcement used in ferrocement. The CFRP consists of unidirectional carbon fibre-woven mats (230 g/m2) in an epoxy matrix (resin used was EPS), GFRP consists of bidirectionally woven glass fibre mat (225 g/m2) in the same epoxy matrix and mesh reinforcement for ferrocement consists of woven square GI wire mesh of gauge 12/29 (0.35 mm diameter wires at a spacing of 2.12 mm). Coupons of 25 mm width were made from the three different composites and tested until failure under tension in a digital universal testing machine. To find the equivalent number of layers of FRPs and mesh reinforcement in ferrocement, a total number of (i) 10 CFRP, (ii) 25 GFRP and (iii) 20 ferrocement tension specimens with a different number of layers were prepared. All coupons were tested to failure and the results are presented. It was found that GFRP with three layers and ferrocement with five layers of mesh reinforcement are equivalent to one layer of CFRP, based on the tensile strength. Similarly, CFRP with 2 layers is equivalent to GFRP with 7 layers and mesh reinforcement of 11 layers in ferrocement, for the materials considered in the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.