Abstract
Tensile properties of vascular smooth muscle cells (VSMCs) of synthetic and contractile phenotypes were determined using a newly developed tensile test system. Synthetic and contractile VSMCs were isolated from the rabbit thoracic aorta with an explant and an enzymatic digestion method, respectively. Each cell floated in Hanks' balanced salt solution of 37°C was attached to the fine tips of a pair of micropipettes with a cell adhesive and, then, stretched at the rate of 6µm/sec by moving one of the micropipettes with a linear actuator. Load applied to the cell was measured with a cantilever-type load cell; its elongation was determined from the distance between the micropipette tips using a video dimension analyzer. The synthetic and contractile VSMCs were not broken even at the tensile force of 2.4µN and 3.4µN, respectively. Their stiffness was significantly higher in contractile phenotype (0.17N/m) than in synthetic one (0.09N/m). The different tensile properties between synthetic and contractile cells are attributable to the differences in cytoskeletal structures and contractile apparatus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.