Abstract
A study was structured to investigate the effects of two different approaches of black-filled NRL films preparation on tensile strengths and tensile stress at 100% strain (M100). In the “First Approach”, carbon black dispersion was added into the NRL and mixed using mechanical stirrer. Then the black-filled NRL was coagulated with acetic acid and dried to form NR black-filled masterbatch. This black-filled NR masterbatch was then masticated and mixed with other compounding ingredients on the 2-roll mill. In the “Second Approach”, carbon black dispersion was mixed with NRL plus all other compounding ingredients using a mechanical stirrer at high mechanical stirring speed (200 rpm) for 3 hrs. Tensile test-pieces from these two rubber specimens were tested according to ISO37. It was observed that the tensile strengths are affected by both methods. In the case of masticated latex masterbatch, the black-filled NRL films gave higher tensile strength (25-27 MPa) as compared to un-masticated black-filled NRL films (11-17 MPa). The optimum amount of filler loading for highest tensile strength in both approaches was 20 phr of carbon black. However these different approaches did not give significant effect to the elongation at break, EB and M100. SEM images of samples prepared from both approaches suggested that the dispersion of filler in the rubber matrix was better in the masticated samples compared to the un-masticated samples. The reason for the difference in the tensile strength between the two black-filled rubbers might be associated with the degree of dispersions and the uniformity of the dispersions within the rubber matrix. The first mixing approach involved high mechanical shearing action during mastication and mixing process on the 2-roll mill. The high shearing actions were able to breakdown filler aggregates efficiently and distributed the dispersed filler uniformly within the rubber matrix. In the second approach, the breakdown of filler aggregates relied on the ball milling process. Further breakdown of filler aggregates did not take place during mechanical stirring of black dispersion with the NRL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.