Abstract

In this work, we develop a structural model for the fracturing of an aircraft coating system applied to a complex airframe structure that includes aluminum panels and stainless-steel fasteners. The mechanical properties of the coating system, which consisted of an MIL-PRF-85582E, Type II, Class C1, two-part epoxy primer and an MIL-PRF-85285 Rev E, Type IV, Class H, two-part polyurethane topcoat, were measured before and after 8 months of atmospheric exposure. The loads applied to the coating occurred from local deformations of the fastener-panel system in response to flight stresses. Two types of flight stresses, compression dominated and tension dominated, were modeled. The degradation of the mechanical properties of the coating after atmospheric exposure increases the severity of cracking of the coating at a critical fastener–skin interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call