Abstract

An interesting technique for modifying carbon fiber-reinforced polymer matrix composites is through hybridization with carbon nanotubes (CNTs). Carbon nanotubes sheets/carbon fibers offer potential benefits of nanoscale reinforcement to the well-established fibrous composites by creating multiscale hybrid micro-nano composites. In this study, the tensile properties of high tensile strength polyacrylonitrile (PAN)- and high modulus pitch-based carbon fiber-reinforced polymer matrix composites incorporating CNT sheets (CNT-sh/CFs/Ep-H: CNT sheets/carbon fibers/epoxy hybrid composites) were investigated. To fabricate CNT sheets, CNT was vertically grown on a quartz glass plate by chemical vapor deposition. A solid-state drawing and winding technique was applied to transform the vertically aligned CNT array into horizontally aligned CNT sheets. The tensile modulus of the CNT-sh/CFs/Ep-H was higher than that of the composite in the as-received state (CFs/Ep: carbon fibers/epoxy bundle composite). The tensile strength of the CNT-sh/PAN-based CF/Ep-H was lower than that of the PAN-based CF/Ep, whereas the tensile strength of the CNT-sh/pitch-based CF/Ep-H was higher than that of the pitch-based CF/Ep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call