Abstract

Mechanical properties of compacted graphite iron (CGI) are substantially related to the microstructural contents and morphologies. To develop a simple and effective relation between graphite morphology and mechanical properties of CGI, a prediction method based on microstructual simulation is proposed in the present work. CGI slices are selected depicting the distribution of graphite spatial morphology. Tensile properties and damage mechanisms of microstructural slices are simulated with finite element (FE) method. By statistics of the graphite area fraction and vermicularity, it shows that 2D slicing scheme can reasonably depict the spatial morphology of 3D CGI microstructure. Tensile properties and damage mechanisms are further analyzed in slice results. A good agreement of the results is observed between experiment and simulation, which verifies the effectiveness of slice FE simulation. This research provides an effective way to estimate the mechanical properties of different regions in the large CGI components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call