Abstract

This paper presents a comparison, based on real practical case studies, between the simple analytical BRE-Bailey method (BRE-BM) and the advanced finite element model (FEM) Vulcan for the membrane action of composite slab panels with unprotected secondary beams at elevated temperatures. Both approaches predicted the membrane behaviour of the composite slabs, comprising compressive membrane action around the slabs' perimeter and tensile membrane action in the central span region of the slabs. This paper mainly studies the effects of the orientation of unprotected secondary beams and the boundary conditions on tensile membrane action of composite slab panels. The results show that the application of the BRE-BM is generally restricted by the conservative assumption of the maximum allowable vertical displacement. In contrast, the FEM estimates higher load-carrying capacities as well as providing a full displacement-time relationship throughout the heating of the slabs. For slab panels with unprotected seconda...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.