Abstract

This study examined the morphological characteristics and mechanical properties of the wings of Tirumala limniace. The wings of this butterfly, including the forewings and hindwings, are composed mainly of a flexible wing membrane and supporting wing veins. Scanning electron microscopy was employed to observe specific positions of the wing membrane and veins and reveal the morphological characteristics. Tensile experiments were conducted to evaluate the mechanical properties of the wings and proved that the multifiber layer structures have a significantly fixed orientation of fiber alignment. A butterfly wing model reconstructed in reverse based on the finite element method was used to analyze the static characteristics of the wing structure in detail. Evaluation of stress and strain after applying uniform loading, perpendicular loading, and torsion revealed that minor wing deformation occurred and was concentrated near the main wing vein, which verifies the steadiness of the butterfly wing structure. Additionally, the flapping of butterfly wings was simulated using computational fluid dynamics to study the flow field near the butterfly wings and the distribution of pressure gradient on the wings. The results confirmed the effect of wing veins on maintaining the flight performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.