Abstract
A heterogeneous fracture modeling technology is presented to simulate complex two-dimensional crack propagation in asphalt mixture which is treated as composites consisting of randomly distributed coarse aggregates and asphalt mastic. In this technology, the random aggregate generation and packing algorithm is utilized to create numerical asphalt mixture samples with heterogeneous mesostructures, and cohesive elements with the bilinear softening law are inserted into both the mastic and the interfaces between the mastic and aggregates to simulate crack initiation and propagation. After mesh-dependence of computational results is discussed, a series of virtual uniaxial tensile fracture tests are performed at −10°C to study nucleation and coalescence of microcracks, and gestation and propagation of main macrocracks. The effects of aggregate distribution and main parameters of the cohesive crack model on the performance of asphalt mixture are also evaluated. Some important conclusions are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.