Abstract

During thermal cycling through the α–β phase transformation under the action of a small external biasing stress, Ti alloys exhibit an average deformation stress exponent of unity and achieve superplastic strains. We report tensile experiments on Ti–6Al–4V with an applied stress of 4.5 MPa, aimed at understanding the failure processes during transformation superplasticity. The development of cavities was assessed as a function of superplastic elongation, and macroscopic neck formation was quantified at several levels of elongation by digital imaging techniques. The effects of thermal inhomogeneity on neck initiation and propagation were also elucidated experimentally. Tensile ductility during transformation superplasticity is compared with that during isothermal creep at the average, effective cycling temperature, and a numerical model is used to show the effect of thermal gradients in limiting superplastic elongation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.