Abstract
The tensile properties of five types of pultruded 0·52 V f glass-fibre-polyester rods were investigated by extending waisted round specimens at atmospheric and superimposed hydrostatic pressures, −H, to 300 MPa. The maximum principal stress at fracture, −700 MPa, decreased, with the superimposition of −H, approximately by its magnitude. As −H increased the failure surfaces became flatter, the amount of fibre pull-out decreased and transverse cracks became shorter or were eliminated. Glass fibres in the failure surfaces were resin free, and failure of the glass fibre bundles appeared to control the fracture process in the entire pressure range for all materials. The decrease in maximum principal tensile stress with increasing −H indicates that the glass fibre failure process is not controlled by a critical tensile stress. Failure criteria are discussed, and in the tension-compression-compression octant of stress space the relevant criteria appear to be strain energy and deviatoric tensile stress, strain and strain energy for these GRPs and glass itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.