Abstract

AbstractSegmented polyether soft segment (SS) elastomers with different hard segments (HS) in film and fiber form were studied by birefringence, DSC, and tensile tests. To understand the morphological contributions to property differences, high resolution tapping AFM resolved ribbon‐like highly anisotropic hard domain (HD) lamellae in low modulus Pebax (polyamide 12 HS) and polyetherester (PEE), films, while lower HS content high melting poly(urethane urea) (PUU) had much smaller less anisotropic but higher melting HDs, explaining its enhanced thermal and mechanical hysteresis properties. Stress–strain tensile data demonstrate the excellent strength and toughness of PUUs and some spun PEE fibers, and film and fiber birefringence data applied during strain cycling up to very high stresses provided the molecular basis for the varying properties. The parameters from non‐Gaussian fits of tensile data provide insight into network properties for these systems exhibiting very high strengths and a large degree of strain hardening. Modeling of PEE and Pebax films also shows the effects of substantial plastic yielding of the HD networks. Tensile data were obtained as a function of strain rate and temperature to help understand the contributions of network restructuring and other factors. For fibers, strain rate data spanning seven decades show and unusual drop in strengths at very high strain rates. Temperature‐dependent tensile data also show large differences between PUU materials versus lower melting PEEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.