Abstract

Tensile creep tests were performed on a CrMnFeCoNi high-entropy alloy at temperatures from 1023 K to 1173 K. A uniform stress exponent 3.7 ± 0.1 was found across all temperatures. The apparent activation energies of creep under various applied stresses were determined to be around 230 kJ/mol and decrease with increasing stress, indicating a stress-assisted, thermally activated behavior. Steady-state creep microstructures feature no subgrain formation and high dislocation density within grains. Based on our results, the creep rate of CrMnFeCoNi is believed to be controlled by both dislocation-dislocation interactions and dislocation-lattice interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.