Abstract

Abstract 1 The performance of refractories under operating conditions is often influenced by tensile creep. This paper proposes a high-temperature tensile testing device which allows for long term creep measurements at operating loads. The chosen specimen geometry is more adequate for the testing of ordinary ceramic refractories which may be heterogeneous with respect to grain size (maximum grain size e.g. 5 mm) and chemical composition. For this application the innovative design exhibits not only improved specimen and loading alignments, but also reliable specimen holding and cooling systems. Specific procedures were followed to avoid uneven stress distribution along the specimen gauge length. The testing procedure was optimized by simulating experimental creep conditions with a finite element (FE) model built with the software Abaqus. Measurements were performed on magnesia–chromite material at different temperatures and applied stresses. Under these testing conditions, three creep stages emerged. The Norton-Bailey creep rate equation was employed to describe the creep behavior for the three stages. An evaluation using the Generalized Reduced Gradient (GRG) algorithm was then performed in order to identify the three creep stages and inversely estimate the Norton-Bailey creep parameters n , a and K for each stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.