Abstract

Tensile creep fracture behavior of polycrystalline near-stoichiometric NiAl has been studied between 700 and 1200 K under initial applied stresses varying between 10 and 200 MPa. The stress exponent for fracture varied between 5.0 and 10.7 while the activation energy for fracture was 250 +/- 22 kJ/mol. The fracture life was inversely proportional to the secondary creep rate in accordance with the Monkman-Grant relation although there was extensive scatter in the data. This observation suggests that the fracture life for near-stoichiometric NiAl was influenced by creep under these stress and temperature conditions. Several different fracture morphologies were observed. Transgranular ductile cleavage fracture occurs at 700 K and at the higher stresses at 800 K. The fracture mode transitions to transgranular creep fracture at 900 and 1000 K and at lower stresses at 800 K, while plastic rupture and grain boundary cavitation occur at 1100 and 1200 K. An experimental fracture mechanism map is constructed for near-stoichiometric NiAl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.