Abstract

Multi-layered braided structures are formed as a result of over-braiding the previously formed braids and they are increasingly being used for numerous applications ranging from hoses to energy absorbing composites. In this research work, a series of multi-layered braided structures were prepared on circular braiding machine for obtaining various combinations of braid angles of 30° and 45° in inner and outer layers. Subsequently, the tensile properties of multi-layered braided structures were analysed and it was found that the braid angle in the outer layer has significantly affected the stress–strain behaviour. A simple analytical model for predicting the tensile behaviour of multi-layered braided structures has also been proposed based on the previously developed model of ‘braid-elastic core’ system. A clear distinction has also been made between the helix and braid angles. Furthermore, a comparison has been made between theoretical and experimental values of braid angle, toughness and stress–strain characteristics of multi-layered braided structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call