Abstract

In some industrial applications, the need to improve the thermal shock resistance of refractories by optimisation of their microstructural design is of major importance. Refractories with enhanced thermal shock resistance usually present a rather low resistance to crack initiation but high resistance to crack propagation (rising R-curves), as well as a mechanical behaviour deviating from pure linear elastic fracture mechanics (LEFM), often qualified as nonlinear. The present work aimed at studying the influence of thermal micro-damage within the microstructure released during the cooling process on the nonlinearity of the mechanical behaviour in tension. The two-phase composites considered were magnesia-spinel refractories with different spinel inclusions content allowing to modulate the micro-damage level. Two different destructive mechanical tests, namely tensile and wedge splitting tests, were performed and their results were compared. The influence of thermal damage on different relevant mechanical parameters was investigated, and a quantitative correlation analysis between these parameters was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.