Abstract

AbstractThe objective is to characterize the effects of the bimodal distribution of rubber particles and its blend ratio on the mechanical properties of the thermoplastic polypropylene blended with two different styrene‐ethylene‐butadiene‐styrene triblock copolymer at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 × 10−1 to 102 (1/s). Phase morphology is investigated to estimate the bimodal rubber particle size distribution. In addition, the in situ observation is conducted during uniaxially stretching within transmission electron microscopy step by step to investigate the deformation events depending on the elongation of samples. The elastic modulus increased gradually as the blend ratio of large rubber particle increased. An increase in the rupture strain and the strain energy up to failure was found for the bimodal rubber particle distributed blend system where the blend ratios of small rubber particle and large rubber particle were same. This is because the smaller particles dominant blend systems show the bandlike craze deformation while the localized plastic deformation is taken place in the larger particles dominated blend systems. The synergistic effect of these rubber particles gives rise to a strong increase in the ductility of these bimodal rubber particle distributed polypropylene systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.