Abstract

Context.Within the sequential accretion scenario of planet formation, planets are build up through a sequence sticking collisions. The outcome of collisions between porous dust aggregates is very important for the growth from very small dust particles to planetesimals. In this work we determine the necessary material properties of dust aggregates as a function the porosity. Aims: Continuum models such as SPH that are capable of simulating collisions of macroscopic dust aggregates require a set of material parameters. Some of them such as the tensile and shear strength are difficult to obtain from laboratory experiments. The aim of this work is to determine these parameters from ab-initio molecular dynamics simulations. Methods: We simulate the behavior of porous dust aggregates using a detailed micro-physical model of the interaction of spherical grains that includes adhesion forces, rolling, twisting, and sliding. Using different methods of preparing the samples we study the strength behavior of our samples with varying porosity and coordination number of the material. Results: For the tensile strength, we can reproduce data from laboratory experiments very well. For the shear strength, there are no experimental data available. The results from our simulations differ significantly from previous theoretical models, which indicates that the latter might not be sufficient to describe porous dust aggregates. Conclusions: We have provided functional behavior of tensile and shear strength of porous dust aggregates as a function of the porosity that can be directly applied in continuum simulations of these objects in planet formation scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call